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the accurate contents.

We present an attention-driven forgery adversarial 
network (AFAN), which can perform inpainting 

operations in an end-to-end manner, utilizing the 
proposed mask region perception strategy.

We design an adaptive contextual attention (ACA) 
algorithm to capture both long-range dependencies and 

local contextual features, thereby enhancing the 
capacity of reconstruction.
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convolution (HODC), which incorporates edge features 
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broad implications for various applications.

1) Improved Image Synthesis Accuracy: By integrating 
adversarial training with forgery region detection, the 
model can better identify and focus on contaminated 

areas, resulting in more accurate and realistic 
inpainting. This advancement is crucial for tasks 

requiring high-quality image restoration, such as old 
photos restoration and historical artifact  preservation.

2) Enhanced Reconstruction Capabilities: The adaptive 
contextual attention algorithm effectively captures both 
long-range dependencies and local contextual features. 
This dual-focus mechanism improves the model's ability 

to handle complex image structures, making it more 
versatile for diverse scenarios.

3) Refined Detail Representation: The high-frequency 
omni-dimensional dynamic convolution leverages edge 
features to enhance the representation of fine details. 

This improvement addresses the challenge of preserving 
high-frequency information, which is vital for producing 

visually appealing and precise outputs.

These contributions collectively push the boundaries of 
image inpainting, offering solutions that are more 

accurate, adaptable, and detail-oriented, with potential 
impacts in fields like computer vision, artificial 

intelligence, and multimedia processing.
What are the three papers in the published 
literature most closely related to this paper? 
Please provide full citation details, including 
DOI references where possible.

1. S. S. Phutke, A. Kulkarni, S. K. Vipparthi, and S. 
Murala, "Blind image inpainting via omni-dimensional 
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robust approach to blind image inpainting," in ECCV. 
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3. H. Zhao, Z. Gu, B. Zheng, and H. Zheng, "Transcnn-
hae: Transformercnn hybrid autoencoder for blind 

image inpainting," in ACM MM, 2022, pp. 6813-6821. 1, 
2, 6, 7, 8

What is distinctive/new about the current 
paper relative to these previously published 
works?

1. Novel Mask Region Perception Strategy.

Unlike existing works that may focus solely on attention 
mechanisms or hybrid architectures, this paper 

introduces a unique mask region perception strategy. By 
combining adversarial training with forgery detection, 
the method enhances the model's ability to accurately 

localize and perceive corrupted areas, which is a 
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significant improvement in blind image inpainting.

2.Attention-Driven Forgery Adversarial Network (AFAN).

The proposed AFAN introduces adaptive contextual 
attention (ACA) blocks to achieve feature modulation 

effectively. While previous works, such as omni-
dimensional gated attention or transformer-CNN 

hybrids, explore attention mechanisms, this paper 
uniquely focuses on adaptively capturing both long-

range and local dependencies to enhance reconstruction 
performance.

3.High-Frequency Omni-Dimensional Dynamic 
Convolution (HODC).

This paper uniquely integrates edge feature 
enhancement through HODC to improve the 

representation of high-frequency details. In contrast, 
prior methods like wavelet queries or general 

convolutional approaches do not explicitly prioritize 
high-frequency and edge information, making this a 
novel contribution to detail preservation and fidelity.

4.End-to-End Inpainting with Comprehensive Design.

While studies such as VcNet and TransCNN-HAE 
contribute robust hybrid frameworks, this paper offers a 

more cohesive end-to-end approach with attention, 
adversarial learning, and convolution integrated 

seamlessly. The holistic design improves performance in 
diverse and challenging scenarios.

The combination of the mask region perception 
strategy, the novel ACA blocks, and the high-frequency 
detail-enhancing HODC sets this paper apart by tackling 

blind image inpainting with a more targeted and 
comprehensive methodology, delivering improvements 
in both perceptual quality and reconstruction accuracy.
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AFAN: An Attention-Driven Forgery Adversarial
Network for Blind Image Inpainting

Jiahao Wang İD , Gang Pan İD , Di Sun İD , Jinyuan Li İD , Jiawan Zhang İD

Abstract—Blind image inpainting is a challenging task aimed1

at reconstructing corrupted regions without relying on mask2

information. Due to the lack of mask priors, previous meth-3

ods usually integrate a mask prediction network in the initial4

phase, followed by an inpainting backbone. However, this multi-5

stage generation process may result in feature misalignment.6

While recent end-to-end generative methods bypass the mask7

prediction step, they typically struggle with weak perception of8

contaminated regions and introduce structural distortions. This9

study presents a novel mask region perception strategy for blind10

image inpainting by combining adversarial training with forgery11

detection. To implement this strategy, we propose an attention-12

driven forgery adversarial network (AFAN), which leverages13

adaptive contextual attention (ACA) blocks for effective feature14

modulation. Specifically, within the generator, ACA employs self-15

attention to enhance content reconstruction by utilizing the rich16

contextual information of adjacent tokens. In the discriminator,17

ACA utilizes cross-attention with noise priors to guide adversarial18

learning for forgery detection. Moreover, we design a high-19

frequency omni-dimensional dynamic convolution (HODC) based20

on edge feature enhancement to improve detail representation.21

Extensive evaluations across multiple datasets demonstrate that22

the proposed AFAN model outperforms existing generative meth-23

ods in blind image inpainting, particularly in terms of quality24

and texture fidelity.25

Index Terms—Blind image inpainting, transformer, generative26

adversarial network.27

I. INTRODUCTION28

IMAGE inpainting typically relies on input masks to indi-29

cate corrupted regions, which are crucial for guiding the30

restoration process. However, it is difficult to acquire masking31

information in practical applications, leading to the poor per-32

formance of inpainting algorithms that are dependent on prior33

knowledge. Thus, this situation promotes the development of34

mask-free image restoration, commonly known as blind image35

inpainting.36

Considering the difficulty in accurately identifying cor-37

rupted parts, blind image inpainting is categorized into two38

distinct methods: end-to-end generation and multi-stage gen-39

eration. Given a contaminated image like Fig. 1(a), end-to-40

end methods [1]–[3] usually employ general inpainting frame-41

works and combine with Generative Adversarial Networks42

(GANs) [4], transformer blocks [5]–[7], etc to further enhance43

performance. Leveraging the feature inference capability of44

backbone networks, these frameworks can directly fill the45

J. Wang, G. Pan, J. Li, and J. Zhang (corresponding author) are with the Col-
lege of Intelligence and Computing, Tianjin University, Tianjin, 300350 China
(e-mail: wjhwtt@tju.edu.cn; pangang@tju.edu.cn; jwzhang@tju.edu.cn).

D. Sun is with Tianjin University of Science and Technology, Tianjin,
300457 China (e-mail: dsun@tust.edu.cn).

(a) Input (b) VCNet [8] (c) TransHAE [9]

(d) OmniNet [3] (e) Ours (f) GT

Fig. 1. Comparison samples of different methods on Places2 dataset. (b-c)
are typical of the multi-stage generation and (d) is typical of the end-to-end
generation.

corrupted regions of the image without using mask information 46

as a reference. Although the end-to-end idea simplifies the 47

process, the lack of mask perception potentially interferes with 48

the attention to features affected by contamination, leading to 49

a blurred texture in the final result, as illustrated in Fig. 1(d). 50

The multi-stage methods [8]–[13] decompose blind image 51

inpainting into two sub-tasks: mask prediction and universal 52

image inpainting. Previous works [8], [10], [11] mainly adopt 53

convolutional neural networks (CNNs) to locate visually un- 54

reasonable regions. Considering that the initial mask prediction 55

network significantly influences the reconstructed content, Ft- 56

tdr [12] utilizes the transformer backbone for mask prediction. 57

TransHAE [9] applies a hybrid transformer encoder with a 58

cross-layer dissimilarity prompt, and merges two sub-tasks 59

into one framework. However, these methods usually lead to 60

misaligned features between the generated mask priors and 61

the subsequent reconstructed regions. The contextual structure 62

distortion of the final result caused by the deviations in mask 63

prediction is illustrated in Fig. 1(b-c). 64

Blind image inpainting requires not just the reconstruction 65

of coherent content and fine texture, but the perception of 66

contaminated regions. Multi-stage methods necessitate the 67

predicted mask to represent contaminated regions, while the 68

continual refinement of mask prediction network tends to 69

increase the complexity of the overall framework. Although 70

end-to-end methods offer a more streamlined solution, they 71
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essentially rely on the inherent repair capabilities of the net-72

work, and they do not contain mask region perception process.73

Therefore, integrating a mask region feedback mechanism into74

end-to-end methods is considered as an effective solution.75

In this paper, we address the above issues by proposing an76

attention-driven forgery adversarial network, named AFAN.77

The key idea of AFAN is to combine forgery region de-78

tection with adversarial learning in the inpainting process,79

which provides an innovative mask region perception strategy80

for end-to-end models. Specifically, the generator accurately81

identifies and reconstructs reasonable content in corrupted82

regions without mask priors. The discriminator adds pixel-83

level perception and noise priors, which locates the inpainted84

regions towards the mask groundtruth from the perspective of85

forgery detection. Note that only the computational costs of86

the generator are produced during inference, which means that87

the discriminator has the potential to integrate more complex88

components and thus improve its mask region perception89

abilities.90

For the feature modeling capability of the AFAN, employing91

transformers to achieve global perception has become the92

mainstream scheme. In practice, the attention matrix is based93

on pairs of isolated queries and keys, which inadvertently lim-94

its the ability to capture fine differences in local features due95

to ignoring complex contextual relationships existing between96

tokens located at adjacent spatial locations. However, this97

ability is important in blind image scenes where the texture of98

contaminated regions is similar to the background regions. To99

address this, we design a novel adaptive contextual attention100

(ACA) to improve the feature modeling ability by integrating101

the local context of adjacent tokens with non-local learning.102

Specifically, within the generator, the ACA introduces a gating103

mechanism in the query component to dynamically fuse multi-104

scale features that contain local contextual information. In105

the discriminator, the ACA reconstructs the noise priors as106

the query component using the same process. This query107

component then engages in cross-attention with key-value108

pairs derived from features of the inpainted image, thereby109

guiding adversarial training for forgery detection. Moreover,110

we develop a high-frequency omni-dimensional dynamic con-111

volution (HODC) to further modulate local details. This mod-112

ule extends upon omni-dimensional dynamic convolution by113

combining edge features, thereby highlighting the contami-114

nated regions and amplifying the representation of texture.115

The main contributions are summarized as follows:116

• We offer a new perspective into blind image inpainting.117

The combination of adversarial training with forgery re-118

gion detection strengthens the perception of contaminated119

areas, allowing the model to synthesize the accurate120

contents.121

• We present an attention-driven forgery adversarial net-122

work capable of performing inpainting operations in an123

end-to-end manner, leveraging the proposed mask region124

perception strategy.125

• We design an adaptive contextual attention algorithm to126

capture both long-range dependencies and local contex-127

tual features, thereby enhancing the capacity of recon-128

struction.129

• We develop a high-frequency omni-dimensional dynamic 130

convolution, which incorporates edge features to improve 131

the representation of details. 132

II. RELATED WORK 133

A. Image Inpainting 134

Conventional image inpainting primarily relies on diffusion- 135

based [14], [15] or patch-matching [16], [17] schemes, which 136

find similar segments within the original image to fill in the 137

corrupted parts. However, these methods struggle to handle 138

distortions involving extensive or complex content. With the 139

advent of deep learning, it has become the dominant tech- 140

nique in the field of image inpainting. Related works [18]– 141

[21] commonly utilize the encoder-decoder architectures and 142

enhance contextual understanding through advanced modules, 143

such as GAN loss [22], gated convolution [23], contextual 144

attention mechanisms [24], [25]. Although effective in ad- 145

dressing abnormal features, these methods face challenges in 146

reconstructing large missing regions. To capture information 147

located far apart spatially, mainstream methods [26]–[28] 148

integrate pixel-wise attention blocks into the models, primarily 149

reinforcing global context. Recently, the focus has shifted 150

towards transformer-based methods [6], [29]–[33], which are 151

suitable for non-local modeling and are highly effective at 152

understanding and reconstructing image content across large 153

spatial extents. Despite their strengths, these methods typi- 154

cally rely on mask information for inpainting, limiting their 155

applicability in scenarios where such mask data is unavailable. 156

Consequently, some researchers [34]–[36] have explored the 157

use of text features as an alternative to mask information for 158

image and video frame inpainting. In response to these chal- 159

lenges, a new approach known as blind image inpainting has 160

emerged, enabling the recovery of corrupted regions without 161

requiring any mask prior. 162

B. Blind Image Inpainting 163

Existing blind image inpainting methods include end-to- 164

end generation and multi-stage generation. Cai et al. [1] 165

first propose blind image inpainting with an end-to-end CNN 166

architecture, which detects and restores corrupted regions 167

without mask reference. Following this, Zhang et al. [2] 168

design a feature-oriented blind inpainting network for deep 169

face verification. Liu et al. [10] introduce residual modules to 170

synthesize the details and structures. These methods typically 171

focus on simple patch regions. To handle complex forms of 172

image contamination, Wang et al. [8] define a two-stage frame- 173

work VCN, which predicts the mask regions before inpainting, 174

This approach accurately guides the content filling process. 175

Similarly, SIN [13] perceives context information of the cor- 176

rupted parts via self-prior learning to promote semantically 177

coherent image synthesis. Considering the exhibit limitation 178

when dealing with larger contaminated regions, recent works 179

apply transformers to model long-range dependencies. For 180

instance, Ft-tdr [12] employs self-attention blocks in both the 181

mask prediction stage and the inpainting stage for better facial 182

feature restoration. TransHAE [9] merges global modeling of 183

the transformer and local modeling of CNN into a single 184

Page 5 of 15 Transactions on Multimedia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Fig. 2. Framework Overview. The AFAN consists of a generator G and a two-branch discriminator D. G integrates adaptive contextual attention (ACA) blocks
to capture both long-range dependencies and local contextual features effectively, and the high-frequency omni-dimensional dynamic convolution (HODC) is
introduced to improve texture details. D employs not just a standard binary classification mechanism D1 for determining the overall authenticity of Io/Igt,
but integrates a multi-scale decoder D2 to perform pixel-level forgery region detection. Note that D is guided by the analysis of noise fingerprints N .

framework to reconstruct the image. Phutke et al. [3] skip185

the mask prediction and design an end-to-end transformer-186

based backbone. Nevertheless, isolated interactions among187

keys, queries, and values in the transformer may lead to188

underutilized local contextual information, which tends to pro-189

duce coarser structures. Therefore, our work aims to aggregate190

long-range modeling and local context representation into a191

transformer module. The proposed framework employs a novel192

mask region perception strategy, which combines adversarial193

training with forgery detection to achieve reasonable image194

synthesis.195

III. APPROACH196

In this work, we propose an end-to-end framework named197

AFAN (see Fig. 2), which consists of a generator G and a two-198

branch discriminator D. Specifically, the generator G directly199

restores corrupted regions in the absence of mask priors.200

To enhance the ability for visual representation, two major201

components are introduced namely: (a) adaptive contextual202

attention (ACA), to synergistically model both global features203

and local contextual details, and (b) high-frequency omni- 204

dimensional dynamic convolution (HODC): for facilitating the 205

perception of texture information. The discriminator D focuses 206

on improving the quality of overall appearance. Inspired 207

by forgery region detection, the proposed AFAN combines 208

adversarial strategies with pixel-level detection of the inpainted 209

areas, and this advanced discriminator can be used as a mask 210

region feedback mechanism. 211

Let h,w be the spatial size, Igt ∈ Rh×w×3 be the 212

groundtruth image and M be the mask image (the values 1 213

and 0 indicate the contaminated and uncontaminated pixels, 214

respectively). The corrupted input image Ic is expressed as 215

below: 216

Ic = Igt ⊙ (1−G[M ]) + S ⊙G[M ], (1)

where ⊙ is pixel-wise multiplication and S ∈ Rh×w×3 is a 217

visual signal (e.g., constant values, random noise or graffiti). 218

G[·] refers to Gaussian smoothing, a technique in image 219

processing that employs a Gaussian filter to reduce noise and 220

detail. This process makes image stitching smoother and even 221
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(a) Input (b) Output (c) Noiseprint++ (d) Scaling

Fig. 3. Noise-sensitive fingerprint representation. (b) shows the image recov-
ered by AFAN. (c) and (d) display the noise-sensitive fingerprints generated by
the Noiseprint++ algorithm from (b) and the feature-scaled (b), respectively.
Note that feature scaling in this scene refers to downsampling the image and
then restoring it to its original size.

renders the contaminated areas less noticeable. The following222

sections will describe the framework architecture and image223

computation.224

A. Adversarial Training with Forgery Detection225

Motivation. For the mask-free image inpainting, the ab-226

sence of mask perception could potentially weaken the restora-227

tion of contaminated regions. The proposed AFAN innova-228

tively integrates adversarial training with forgery detection,229

introducing a feedback mechanism for mask regions to en-230

hance the performance of end-to-end methods. Thus, the231

discrimination module is structured not just to recover realistic232

details but to evaluate the genuineness of the restored regions.233

Forgery Detection. The discriminator D identifies in-234

painted regions from the perspective of forgery detection and235

aligns them with the mask groundtruth. Recent forgery de-236

tection methods usually introduce noise-sensitive fingerprints237

as additional input, such as Noiseprint [37], Noiseprint++238

[38], and SRM filtering [39]. This work uses the state-of-239

the-art Noiseprint++ algorithm to generate robust noise priors240

N , as illustrated in Fig. 3. Even when feature scaling alters241

the distribution of unseen noise in the inpainted image, this242

algorithm effectively highlights grid inconsistencies in the243

edited areas (see Fig. 3(d)).244

Discriminator Architecture. As shown in Fig. 2(b), the245

inpainted image Io generated by the generator G is fed into246

the discriminator D as input. The encoder of D consists247

of downsampling layers and ACA blocks. To enhance the248

robustness of forgery detection, the noise-sensitive fingerprints249

N are integrated into the image features through the cross-250

attention mechanism of the ACA blocks. As indicated in Fig.251

4, the integration of noise fingerprints N significantly en-252

hances the discriminator’s capability to identify forged regions.253

Subsequently, the output of the encoder is divided into two254

branches. One branch D1 employs binary classification for a255

holistic assessment of authenticity, assigning a value of 1 for256

real and 0 for fake. The other branch D2 leads to a multi-scale257

decoder that aggregates features of all downsampling stages258

to produce robust pixel-level labeling maps. This decoder259

identifies forged areas as fake and genuine areas as real.260

Adversarial Training. For the overall image discrimination,261

this work utilizes the hinge loss function [40] to optimize both262

(a) Input (b) Output (c) SA(Io) (d) CA(Io, N )

Fig. 4. Forgery discrimination heatmaps generated using self-attention SA
and cross-attention CA of the ACA block. (b) shows the image recovered
by AFAN, and (d) indicates the fusion of noise fingerprints N and inpainted
images Io via cross-attention.

the projected discriminator D and the generator G. Thus the 263

objective function for the GAN process is expressed as: 264

LD
adv = EIgt [ReLU(1−D1(Igt, N))]

+ EIo [ReLU(1 +D1(Io, N))],

LG
adv = −EIo [D1(Io, N)].

(2)

Additionally, for mask region perception, we implement 265

forgery discrimination devised to distinguish between authen- 266

tic and forged pixels within an image: 267

LD
forg = EIgt [ReLU(1−D2(Igt, N))]

+ EIo [ReLU(1−D2(Io, N)⊙ (1−M)]

+ EIo [ReLU(1 +D2(Io, N)⊙M)],

LG
forg = −EIo [D2(Io, N)⊙M ].

(3)

B. Generator Architecture. 268

As illustrated in Fig. 2(a), the generator G is an encoder- 269

decoder network comprising 8 transformer-style components 270

and several sampling layers. Each pair of mirrored components 271

between the encoder and decoder contains [4, 6, 6, 8] ACA 272

blocks, with [1, 2, 4, 8] attention heads and [48, 96, 192, 384] 273

channels, respectively. Notably, a HODC layer is added before 274

each block to enhance texture details, and the ACA performs 275

self-attention instead of cross-attention in the generator. The 276

input image Ic to the encoder sequentially passes through 277

HODC layers (which can serve as downsampling layers) and 278

ACA blocks, progressively reducing the image size (height, 279

width) to 1/8 of its original dimensions. Conversely, the 280

decoder employs upsampling layers and analogous processes 281

to reconstruct the image to its original input dimensions. 282

Meanwhile, the skip connections are added in each feature 283

scale to retain low-level information. 284

C. Adaptive Contextual Attention 285

The self-attention mechanism focuses on the correlations 286

between pairs of individual tokens. Given the features F ∈ 287

Rd×c (d is spatial size and c is channel) from intermediate 288

layers of AFAN, the attention first converts F into queries Q, 289
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(a) GT (b) Original Scale (c) 1
2

Scale

(d) 1
4

Scale (e) 1
8

Scale (f) Gated Fusion

Fig. 5. Multi-scale feature representation. (b)-(e) are the contextual feature
representations sampled at different spatial scales in the ACA. (f) represents
the gated mechanism G[F̂ , F ] that adaptively fuse these multi-scale features.

keys K, and values V using respective linear matrices , and290

the output Fa ∈ Rd×c is formulated as follows:291

Fa = softmax

(
Q ·KT

√
d

)
· V. (4)

Building on this, CAT [41] proposes the cross-attention that292

combines asymmetrically two separate embedding sequences293

of the same dimension.294

For the discriminator D, we employ cross-attention (the295

noise fingerprints N serve as a query QN input and the296

inpainted image Io as a key K and value V input), effectively297

integrating noise priors into the image features. Since the noise298

fingerprints N are sparse high-frequency information, applying299

global spatial attention to these features may be redundant and300

computationally expensive. Therefore, the attention operation301

targets the channel dimensions (c × c) instead of the spatial302

dimension (d× d):303

FD
a = V · softmax

(
QT

N ·K√
d

)
. (5)

Although cross-channel attention effectively recovers high-304

quality depth features, it lacks the compensation for spatial305

feature modulation. This shortfall is due to the dot product306

calculation treating each query-key pair as an independent307

unit, thus ignoring the intricate spatial contextual relationships308

among tokens. This limitation weakens the capacity to capture309

the nuanced distinctions within local features, especially for310

noise fingerprints. To address this, we develop a novel scheme311

named adaptive contextual attention (ACA), which integrates312

local context computation with global attention, as illustrated313

in Fig. 2(c). Specifically, the features N ∈ Rd×c extracted314

from noise fingerprints are split into n parts at the channel315

level, resulting in a distinct set {N0, N1, ..., Nn−1}, 2 ≤ n ≤316

4. The first part N0 performs depth-wise convolutions (DW-317

Conv) with kernel size k = 2n− 1 to collect local contextual318

information, while the rest parts Ni (i ∈ [1, n− 1]) are down-319

(a) (b) (c) (d)

Fig. 6. Edge feature representation. (a) and (c) are the contaminated images,
while (b) and (d) are the corresponding edge images obtained through Scharr
filtering. The edge features amplify the global detail representation and
highlight the contours and textures of the contaminated regions that are similar
to the background.

sampled to 1/2i of their original size through max-pooling lay- 320

ers. Subsequently, these multi-scale features similarly perform 321

k × k depth-wise convolutions and restore their original size 322

using the nearest interpolation. This process generates a new 323

set {N̂0, N̂1, ..., N̂n−1}, which are then concatenated along the 324

channel dimension to form an aggregated feature N̂ . It can be 325

formulated as: 326

N0, N1, ..., Nn−1 = Split(N),

N̂0 = DWConvk×k(N0),

N̂i =↑2i (DWConvk×k(↓ 1

2i
(Ni))),

N̂ = Concat(N̂0, N̂1, ..., N̂n−1),

(6)

where ↓ and ↑ represent the downsampling and upsampling 327

operations, respectively. The feature N̂ contains rich spatial 328

context, which can enhance the detailed representation of the 329

initial feature N . To this end, we apply a gated mechanism 330

G [·] to adaptively fuse them: 331

G
[
N̂ ,N

]
= ϕ(N̂)⊙N, (7)

where ϕ is GELU activation function and ⊙ is pixel-wise 332

multiplication. Meanwhile, a new Q̂ component is generated 333

based on the fused features, and the output F̂D
a ∈ Rd×c of 334

ACA is calculated as follows: 335

Q̂N = Conv1×1(G
[
N̂ ,N

]
),

F̂D
a = V · softmax

(
Q̂T

N ·K√
d

)
.

(8)

This scheme efficiently utilizes the contextual information 336

among neighboring tokens to enhance non-local learning. 337

For the generator G, the enhancement of local contextual 338

processing is necessary, especially in scenes where the style 339

of the partially contaminated region is similar to that of the 340

background. Thus, we retain the ACA module and use self- 341

attention (K,Q, V components are all generated from the same 342

input feature F via linear layers) instead of cross-attention. 343

The adaptive contextual features can be represented as: 344

F0, F1, ..., Fn−1 = Split(F ),

F̂0 = DWConvk×k(F0),

F̂i =↑2i (DWConvk×k(↓ 1

2i
(Fi))),

F̂ = Concat(F̂0, F̂1, ..., F̂n−1),

G
[
F̂ , F

]
= ϕ(F̂ )⊙ F.

(9)
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(a) Input (b) VCNet [8] (c) TransHAE [9] (d) MAT [32] (e) OmniNet [3] (f) Ours (g) GT

Fig. 7. Comparison with the state-of-the-art. These images come from CelebAMask-HQ [42], FFHQ [43] with various contamination patterns.

Fig. 5 shows feature representations at different scales and345

G[F̂ , F ] aggregates rich contextual information. After obtain-346

ing Q̂ through a convolution layer, the output F̂G
a ∈ Rd×c of347

ACA can be formulated as:348

Q̂ = Conv1×1(G
[
F̂ , F

]
),

F̂G
a = V · softmax

(
Q̂T ·K√

d

)
.

(10)

D. High-frequency Omni-dimensional Dynamic Convolution349

Due to the lack of mask guidance, blind image inpaint-350

ing may struggle to detect contaminated regions that have351

semantic similarity to the background. Furthermore, current352

research [44] shows that the information lost in the process353

of downscaling is primarily high-frequency information. To354

better highlight contaminated regions and preserve texture, we355

propose a high-frequency omni-dimensional dynamic convo-356

lution (HODC) illustrated in Fig. 2(d) (the purple path), which357

utilizes edge features to amplify the representation of details.358

For instance, Fig. 6 indicates that the edge features can well359

represent the contours of the contaminated regions and the360

textures of the normal regions in the input image Ic.361

Typically, dynamic convolution [45] selects n convolutional362

kernels W based on the input data, rather than using a single363

kernel in standard convolution. Later, the omni-dimensional364

dynamic convolution (ODC) [46] simultaneously selects four365

key dimensions of input features that specifically pertain to366

spatial (αs ∈ Rk×k, k is the kernel size), channel (αc ∈ Rcin ), 367

filter (αf ∈ Rcout ), and kernel (αw ∈ R). Fig. 2(d) (the blue 368

path) shows that the convolutional sets α = [αs, αc, αf , αw] 369

are generated through a series of attention processes P [·], 370

which include global average pooling (GAP), linear projection, 371

normalization, and Softmax/Sigmoid calculation. Given the 372

features F ∈ Rd×cin from intermediate layers of AFAN, the 373

ODC scheme can be formulated as: 374

αs, αc, αf , αw = P [F ] ,

Fodc =
n∑

i=1

(αwi
⊙ αfi⊙αci ⊙ αsi ⊙Wi) ∗ F,

(11)

where Fodc ∈ Rd×cout is the output features, ∗ is the 375

convolution operation. 376

To amplify the representation of details, HODC employs 377

images created through edge detection (e.g., Scharr filter [47]) 378

to augment the fine details in the input features. Specifically, 379

the Scharr operator computes the gradients of F at each 380

point in the horizontal and vertical directions. This process is 381

achieved by performing convolution with the Scharr kernels 382

Wx and Wy , respectively: 383

Wx =

 −3 0 3
−10 0 10
−3 0 3

 , Wy =

 3 10 3
0 0 0
−3 −10 −3

 . (12)

Subsequently, the magnitude of the gradient feature E at each 384

point is computed as follows: 385

E =
√
(Wx ∗ F )2 + (Wy ∗ F )2. (13)
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(a) Input (b) VCNet [8] (c) TransHAE [9] (d) MAT [32] (e) OmniNet [3] (f) Ours (g) GT

Fig. 8. Comparison with the state-of-the-art. These images come from Paris StreetView [48] and Places2 [49] with various contamination patterns.

To enhance the input features with the detected edge details,386

the weighted sum FE ∈ Rd×cin of the original features and387

edge features can be formulated as:388

FE = β1F + β2E, (14)

where β1, β2 are weights that control the contribution of the389

original image and the edge detail. In this work, we set β1 = 1390

and β2 = 0.5, which means the enhanced image retains the391

original colors and brightness while emphasizing the texture.392

Finally, the output feature Fhodc ∈ Rd×cout can be represented393

as:394

α̂s, α̂c, α̂f , α̂w = P [FE ] ,

Fhodc =
n∑

i=1

(α̂wi ⊙ α̂fi⊙α̂ci ⊙ α̂si ⊙Wi) ∗ F.
(15)

Fig. 10 visualizes the feature maps generated by each395

component using ODC and HODC, respectively. The HODC396

module incorporates edge features to strengthen the encoder’s397

capability in identifying contaminated areas while enhancing398

the decoder’s proficiency in capturing fine texture details.399

E. Loss Function400

Taking into account the consistency between overall content401

and fine detail, AFAN applies four types of loss functions:402

mean squared error (MSE) loss, perceptual loss, stochastic403

structural similarity (S3IM) loss [50], and GAN loss.404

Content Loss. The generator G is designed to take a405

corrupted image Ic as input and aims to reconstruct the output406

(a) (b) (c) (d) (e)

Fig. 9. A groundtruth image (a) can be subjected to contamination (b) using
three distinct types of patterns: regular pattern (c), irregular pattern (d), and
text-like pattern (e).

image Io towards the groundtruth image Igt. The formulation 407

of this loss function is as follows: 408

Lcon = ∥Io − Igt∥22, (16)

where ∥·∥2 is the Euclidean norm. 409

Perceptual Loss. To improve the perceptual quality of 410

images, we adopt a perceptual loss function using a pre-trained 411

VGG-16 network [51]. 412

Lperc =
∑
i

∥Φi (Io)− Φi (Igt)∥1 , (17)

where Φi represents the output feature map of the i-th layer 413

in VGG-16, corresponding to the activation layers: ReLU1 1, 414

ReLU2 1, ReLU3 1, ReLU4 1, and ReLU5 1. 415

S3IM Loss. The majority of tasks involving image synthe- 416

sis employ the Structural Similarity Index Measure (SSIM) 417

loss, which captures local information from adjacent pixels 418

using convolutional kernels. However, SSIM’s ability to detect 419
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TABLE I
QUANTITATIVE EVALUATIONS ON THE CELEBAMASK-HQ [42], FFHQ [43], PARIS STREETVIEW [48] AND PLACES2 [49] WITH VARIOUS

CONTAMINATION PATTERNS AS INPUT. ↓ INDICATES THE LOWER THE BETTER WHILE ↑ MEANS THE HIGHER THE BETTER.

Dataset VCNet [9] TransHAE [8] MAT [32] OmniNet [3] Ours

PSNR ↑

CelebAMask-HQ 24.4288 27.3579 26.5847 24.8500 28.2603
FFHQ 23.2432 26.9964 25.7812 23.1101 27.1040

Paris StreetView 23.7850 24.9231 25.0484 22.8219 26.9927
Places2 25.0681 25.4577 26.0403 24.8325 26.7409

SSIM ↑

CelebAMask-HQ 0.8871 0.9005 0.9157 0.8997 0.9387
FFHQ 0.8988 0.9163 0.9112 0.9010 0.9124

Paris StreetView 0.8275 0.8626 0.8713 0.8025 0.8724
Places2 0.8615 0.8882 0.8741 0.8291 0.8983

ℓ1(%) ↓

CelebAMask-HQ 4.3712 2.6468 3.8901 4.9374 1.8316
FFHQ 4.2832 2.0420 3.7285 5.0538 2.1642

Paris StreetView 5.8475 3.1092 3.8565 4.4269 2.8544
Places2 4.7277 3.0596 2.3656 3.8230 2.1702

LPIPS ↓

CelebAMask-HQ 0.1380 0.0722 0.0651 0.1424 0.0411
FFHQ 0.1125 0.0866 0.0874 0.1840 0.0459

Paris StreetView 0.1653 0.0991 0.0795 0.2173 0.0805
Places2 0.0921 0.0941 0.0825 0.1480 0.0722

FID ↓

CelebAMask-HQ 13.2764 11.9616 10.9558 14.9926 8.4829
FFHQ 13.3812 11.6033 12.0317 15.2021 10.3784

Paris StreetView 52.1438 35.8904 38.3674 43.4504 34.9745
Places2 27.2467 23.4471 24.4273 23.1912 20.5134

(a) Input (b) C1 (c) C2 (d) C3 (e) C4 (f) C5 (g) C6 (h) C7 (i) C8 (j) Output

Fig. 10. Feature map visualization of the generator. C represents the 8 transformer-style components. Row 1 shows outputs employing the ODC module,
while Row 2 shows outputs employing the HODC module. C1 − C4 are encoder components and C5–C8 are decoder components.

structural information in distant pixels is limited. To overcome420

this limitation, S3IM loss is a feasible scheme that randomly421

scrambles the pixel distribution of minibatch images to create422

non-local sets of pixels, and then SSIM is applied to these423

artificially constructed patches:424

Ls3im = 1− S3IM(Io, Igt). (18)

In the training process of AFAN, the improved S3IM loss425

randomly scrambles the pixels within a single output image426

Io (including the groundtruth) rather than using minibatch427

images in [50]. This innovation aims to enhance the detection428

of structural information across broader regions of each image,429

improving the quality and coherence of inpainting results.430

Total Loss. The whole loss function can be obtained as:431

L = Lcon + λ1Lperc + λ2Ls3im + λ3Ladv + λ4Lforg (19)

where λ1, λ2, λ3, λ4 are hyper-parameters. In this work, we432

empirically set λ1 = 100, λ2 = 1, λ3 = λ4 = 0.1.433

IV. EXPERIMENTS 434

A. Implementation Details 435

The AFAN is evaluated using four public datasets including 436

a range of subjects: CelebAMask-HQ [42] and FFHQ [43] 437

for high-quality faces, Paris StreetView [48] and Places2 [49] 438

for scenes. In terms of data preprocessing, all input images 439

are contaminated by constant values, patches of the scene 440

images, and texture images. As shown in Fig. 9, we apply two 441

contamination patterns: regular patterns and irregular patterns 442

(including text-like patterns [52]), to simulate various types of 443

blind images. 444

During the training phase, we use the Adam optimizer [53] 445

with hyperparameters β1 set to 0.5 and β2 to 0.9. The learning 446

rate for both the generator and discriminator is configured at 447

1e-4. The AFAN is developed using PyTorch and is trained 448

on NVIDIA RTX 3090 GPUs. 449

B. Quantitative Evaluation 450

In the evaluation of inpainting results with various con- 451

tamination patterns, AFAN is compared with state-of-the-art 452
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(a) Input (b) BF (c) b+HODC (d) c+ACA (e) GT

Fig. 11. Ablation study on different configurations of the AFAN for blind
image inpainting. The experiment is conducted on the CelebAMask-HQ [42]
dataset with regular contamination patterns.

TABLE II
ABLATION STUDY ON THE CELEBAMASK-HQ [42] DATASET WITH

REGULAR CONTAMINATION PATTERN.

Methods PSNR ↑ SSIM ↑ ℓ1(%) ↓ LPIPS ↓ FID ↓
BF 25.84 0.874 3.93 0.082 17.48

BF+HODC 26.13 0.891 3.47 0.079 15.27
BF+ACA 26.47 0.909 3.34 0.075 14.51

BF+HODC
+ACA 26.91 0.921 2.97 0.066 12.45

such as VCNet [8], TransHAE [9], and OmniNet [3] for blind453

image inpainting. Meanwhile, a non-blind image inpainting454

method MAT [32] is applied as a comparative reference.455

These comparisons are conducted on testing datasets from456

CelebAMask-HQ [42], FFHQ [43], Places2 [49], and Paris457

StreetView [48]. Consistent with standard practices in image458

inpainting research, we employ Peak Signal to Noise Ratio459

(PSNR), Structural Similarity (SSIM), and Mean ℓ1 error as460

quantitative metrics, which are calculated on the spatial images461

to assess the accuracy of the inpainting. In addition, two462

additional metrics: Learned Perceptual Image Patch Similarity463

(LPIPS) [54] and the Frechet Inception Score (FID) [55], are464

utilized to measure the perceptual quality of predicted images465

compared to the groundtruth images. As detailed in Table I,466

comparative experiments conducted on different datasets show467

that the proposed method outperforms existing approaches on468

most of the metrics.469

C. Qualitative Evaluations470

To validate the inpainting performance, Fig. 7 and Fig. 8471

present a comparative analysis of the predicted results from472

different methods. As illustrated in Fig. 7, the inpainting result473

from VCNet seems to produce distorted structures, particu-474

larly noticeable around contaminated edge regions. TransHAE475

tends to produce texture noise during the reconstruction of476

features. Although MAT utilizes mask information as part477

of its input for non-blind image inpainting, the output still478

exhibits artifacts that are affected by contaminants present479

in the original image. OmniNet is capable of recovering480

reasonable content but often ignores texture details. In con-481

trast, our method enhances the perception of contaminated482

regions via an adversarial training strategy to achieve accurate483

reconstruction. Moreover, Fig. 8 shows similar results on the484

(a) Input (b) w/o D (c) AFAN (d) GT

Fig. 12. Ablation study of the discriminator D.The experiment is conducted
on four datasets with contamination. w/o D refers to the configuration in
which the AFAN model is trained without employing the proposed mask
region perception strategy denoted as D.

testing datasets. Both VCNet and TransHAE struggle with 485

maintaining reasonable semantics and detail accuracy. While 486

MAT and OmniNet attempt to generate plausible structures, 487

their outputs often contain confusing artifacts. In contrast, our 488

method produces more reliable and high-quality inpainting 489

results. 490

D. Ablation study 491

In this subsection, we analyze how the proposed modules 492

(ACA block, HODC) contribute to the final performance of 493

image inpainting. Specifically, we evaluate the effectiveness 494

of the AFAN backbone framework (BF) by removing the 495

HODC module and replacing the ACA blocks in the generator 496

with standard transformer blocks. Following this, the HODC 497

layers and ACA scheme are progressively integrated into the 498

backbone, enabling us to assess their individual contributions 499

to the overall performance systematically. As shown in Fig. 500

11, these components sequentially enhance the generation of 501

reasonable contextual content and fine texture details on the 502

CelebAMask-HQ [42] dataset. Note that this dataset adopts 503

regular contamination patterns, which are referred as unseen 504

patterns in TransHAE. Moreover, Table II illustrates that our 505

proposed modules demonstrably enhance the performance in 506

the task of blind image inpainting. 507

To further analyze the contribution of each module to the 508

overall performance, we train a series of variant AFANs: i) 509

without (denoted as w/o) the proposed mask region perception 510

strategy, which is enabled by the discriminator D; ii) without 511

employing the ACA scheme; iii) without incorporating the 512

HODC layers. Quantitative comparisons between these AFAN 513
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TABLE III
QUANTITATIVE EVALUATIONS ON THE CELEBAMASK-HQ [42], FFHQ [43], PARIS STREETVIEW [48] AND PLACES2 [49] WITH VARIOUS

CONTAMINATION PATTERNS AS INPUT. ↓ INDICATES THE LOWER THE BETTER WHILE ↑ MEANS THE HIGHER THE BETTER.

Dataset w/o ACA w/o D AFAN Dataset w/o HODC w/o D AFAN

PSNR ↑ FFHQ 26.5408 26.9736 27.1040 CelebAMask-HQ 27.9465 27.4748 28.2603
Paris StreetView 25.3473 26.7190 26.9927 Places2 26.5374 25.9581 26.7409

SSIM ↑ FFHQ 0.9033 0.9087 0.9124 CelebAMask-HQ 0.9201 0.9263 0.9387
Paris StreetView 0.8613 0.8700 0.8724 Places2 0.8716 0.8857 0.8983

ℓ1(%) ↓ FFHQ 3.7346 2.2184 2.1642 CelebAMask-HQ 1.9305 2.0953 1.8316
Paris StreetView 3.8723 2.9211 2.8544 Places2 2.2062 2.2637 2.1702

LPIPS ↓ FFHQ 0.0760 0.0504 0.0459 CelebAMask-HQ 0.0457 0.0486 0.0411
Paris StreetView 0.0924 0.0813 0.0805 Places2 0.0779 0.0842 0.0722

FID ↓ FFHQ 12.8712 11.3538 10.3784 CelebAMask-HQ 9.2674 10.6353 8.4829
Paris StreetView 39.3578 36.3674 34.9745 Places2 22.0278 22.3898 20.5134

(a) Input (b) w/o ACA (c) AFAN (d) GT

Fig. 13. Ablation study of the ACA strategy. The experiment is conducted on
FFHQ [43] and Paris StreetView [48]. w/o ACA refers to the configuration
where the AFAN model is trained without employing the ACA scheme.

(a) Input (b) w/o HODC (c) AFAN (d) GT

Fig. 14. Ablation study of the HODC strategy. The experiment is conducted
on CelebAMask-HQ [42] and Places2 [49]. w/o HODC refers to the config-
uration where the AFAN model is trained without HODC layers.

variants and the full AFAN are demonstrated in Table III. The514

results indicate that all variant models underperformed com-515

pared to the full model. Specifically, a comparison of columns516

(b) and (c) in Fig. 12 shows that the proposed mask region517

perception strategy significantly reduces the presence of con-518

taminant artifacts. Fig. 13 illustrates that ACA plays a crucial519

role in improving the precision of local feature identification520

while preserving rich detail. Similarly, the HODC module,521

leveraging edge features calculated by the Scharr operator,522

improves the expression of fine details. Its effectiveness is523

(a) Input (b) VCNet (c) OmniNet (d) Ours

Fig. 15. Comparison with the state-of-the-art on old photos and mural
painting.

further validated by the visual results presented in Fig.14. 524

E. Application 525

Fig. 7 and Fig. 8 demonstrate the effectiveness of AFAN 526

in tasks such as graffiti removal (e.g., text-like contamina- 527

tion patterns). Additionally, we extend AFAN to applications 528

like old photo and mural restoration, where defects such 529

as scratches and blemishes, which lack mask priors, require 530

blind image inpainting techniques for accurate removal and 531

completion. Fig. 15 shows a qualitative comparison between 532

AFAN and state-of-the-art blind image inpainting models. The 533

results from VCNet and OmniNet exhibit blurring artifacts and 534

fail to completely remove scratches. In contrast, our model 535

generates more realistic structures and preserves richer details, 536

highlighting its superior performance in such restoration tasks. 537

Page 13 of 15 Transactions on Multimedia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



V. CONCLUSION538

This paper presents AFAN, a robust blind inpainting frame-539

work that exhibits significant restoration capabilities across540

diverse benchmark datasets. The framework leverages an541

adversarial training strategy, incorporating forgery detection542

as a mask region perception mechanism. To address both543

global and local content features effectively, AFAN integrates544

adaptive contextual attention blocks, enhancing its ability to545

handle contextual relationships. Additionally, high-frequency546

omni-dimensional dynamic convolution is implemented to547

capture more texture details, contributing to more realistic548

and detailed reconstructions. Comprehensive evaluations on549

various benchmark datasets demonstrate that AFAN achieves550

superior results in blind image inpainting for various contam-551

ination. The proposed AFAN excels in content reconstruction552

without relying on mask priors, expanding its applicability to553

more realistic scenarios. Additionally, the ACA and HODC554

modules offer valuable insights for future related tasks.555
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Supplementary Materials

A. Qualitative Evaluations1

To validate the inpainting performance, Fig. 1 presents2

comparative results from a variety of methods across an3

extended set of examples. The predicted results align with the4

descriptions provided in Section IV-B, demonstrating that our5

method consistently produces more reliable and high-quality6

inpainting results.7

B. HODC Detail8

Section III-D explains how HODC extends upon omni-9

dimensional dynamic convolution (ODC) by incorporating10

edge features to enhance the representation of fine details.11

For edge detection, several filtering operators (e.g., Scharr,12

Laplace, Canny, Sobel, Prewitt, Roberts) are commonly em-13

ployed to highlight contours and details. Fig. 2 illustrates the14

edge features of these operators, as well as their fusion results15

with the original image. Notably, Fig. 2(b-f) demonstrates the16

introduction of extraneous edge artifacts, while the Scharr17

operation in Fig. 2(g) strikes an optimal balance between detail18

augmentation and structural fidelity. Consequently, the HODC19

employs edge features calculated by the Scharr operator to20

enhance the expression of details.21

C. Inpainting Detail22

To analyze the image reconstruction process, we visualized23

the feature maps generated by each component of the generator24

G, labeled as [C1, C2, ..., C8]. Fig. 3 presents the dynamic25

visualization process, which includes examples of both high-26

quality face images and scene images, illustrating how the27

generator handles diverse visual content.28

Specifically, the encoder, consisting of components29

[C1, ..., C4], systematically reduces the spatial dimensions of30

the images. This process primarily extracts and condenses31

contextual information surrounding the contaminated regions32

within the images. Additionally, with the integration of the33

proposed HODC and ACA modules, the encoder captures34

and intricately processes features specifically related to the35

contaminated regions, as illustrated in Fig. 3(b-e).36

Following this targeted feature extraction, the decoder, com-37

prised of components [C5, ..., C8], utilizes the refined features38

processed by the encoder to reconstruct the complete image.39

This reconstruction is achieved through a sequence of HODC40

layers and ACA blocks, designed not only to rebuild the image41

but also to predict and fill in the contaminated parts, effectively42

restoring the image to its intended state. Fig. 3(f-i) displays43

the reconstruction process within the decoder.44
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(a) Input (b) VCNet [1] (c) TransHAE [2] (d) MAT [3] (e) OmniNet [4] (f) Ours(D) (g) Ours (h) GT

Fig. 1. Comparison with the state-of-the-art. These images come from datasets listed in Section 4.1 with various contamination patterns. Ours(D) refers to
the configuration where the AFAN model is trained without employing the mask supervision strategy denoted as D.

(a) GT (b) Canny (c) Laplacian (d) Prewitt (e) Roberts (f) Sobel (g) Scharr

Fig. 2. Comparison of different edge detection filters. The first row shows the edge features of the corresponding operator, and the second row shows the
fusion result with the original image. The experiment is conducted on the CelebAMask-HQ [5] dataset.
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(a) Ic (b) C1 (c) C2 (d) C3 (e) C4 (f) C5 (g) C6 (h) C7 (i) C8 (j) Io

Fig. 3. Feature map visualization of the generator. C represents the 8 transformer-style components, Ic is the contaminated image and Io is the inpainted
image. C1 − C4 are encoder components and C5–C8 are decoder components.
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