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Abstract

Infrared and visible image fusion aims at obtaining fused
images that keep advantages of source images, e.g., detailed
textures and clear edge structures. To tackle the challenge
in modeling features from visible image under motion blur
and low light conditions, we propose a novel fusion frame-
work, DSTFuse, which aims to leverage infrared image as
the style image and enable it to perform style transfer on the
visible image to efficiently eliminate motion blur. Specif-
ically, DSTFuse contains a Cross-Modality Style Transfer
Module (CST-module) that collect appropriate style infor-
mation from the infrared image and guide the transforma-
tion of blurry objects into the corresponding style while
preserve all other elements without alteration. The output
of CST-module is integrated with the image with a multi-
tude of visible features from another module and mapped
into final image. Extensive experiments show that DSTFuse
achieves promising results in infrared-visible image fusion
task. And it is also shown that DSTFuse can boost the
performance in downstream infrared-visible object detec-
tion. Code will be released at https://anonymous.
4open.science/r/DSTFuse-0C1D.

1. Introduction
Image fusion is a fundamental image enhancement tech-

nique. It aims to combine images with distinct modal-
ity features into a image that retains the advantage of the
source images [1, 34, 35, 49, 50, 54]. One prevalent applica-
tion of image fusion is the infrared and visible image fu-
sion (IVIF) [31, 39, 40, 42]. Proverbially, visible images
can reflect the appearance and color information of objects,
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Figure 1. The effect of style transfer on suboptimal visible data for
IVIF tasks. (a) The suboptimal visible data with motion blur and
low light condition. (b) The blur removing process of transferring
visible images into infrared style. The red box and blue box are
visible content image and infrared style image, respectively. (c)
The effect of texture details retaining by DSTFuse.

while infrared images provide thermal radiation informa-
tion, characterized by a high contrast between the target and
its surroundings. By integrating the complementary infor-
mation from both visible and infrared images, IVIF gen-
erates a fused image that that overcomes the limitations of
visible images under environmental constraints and the lack
of detail in infrared images. Therefore, IVIF has broad ap-
plications across various fields such as military [19], secu-
rity [9], and medical image processing [50].

To tackle the shortcomings of conventional IVIF meth-
ods [16, 24, 36], numerous deep learning-based techniques
have been developed. These method can be categorized into
two main classes: Generative Adversarial (GANs)-based
network [3, 32, 33, 46] and the Auto-Encoder-based net-
work [13, 20, 21, 48]. The GAN-based methods typically
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consist of a generator responsible for generating the fused
image and a discriminator that evaluates the fusion perfor-
mance. And Auto-Encoder-based methods extract features
from infrared-visible images through an encoder and then
map these features to a new representation space through a
decoder. To leverage the the multimodal features, numerous
previous works have attempted to map the most representa-
tive features of images from different modalities into the
final image [11, 27, 40, 47, 55].

Despite a lot of researches on IVIF, there are few studies
concentrating on utilizing suboptimal data, especially for
data containing a significant number of blurry objects. The
vast majority of studies utilize high-quality datasets such as
TNO [43] and MSRS [41], which typically do not exhibit
motion blur (Fig. 1(a)). However, the previous works using
high-quality datasets have a limitation. Due to the variabil-
ity of real-world environments, motion blur in source im-
ages is inevitable in practical applications of downstream
tasks such as detection and segmentation. Therefore, it is
crucial to mitigate the impact of a large volume of subopti-
mal data on IVIF tasks. Moreover, due to the significantly
longer exposure time of RGB cameras compared to infrared
cameras, the quality of infrared images for blurred objects
in the same scene is superior to that of visible images. It
is also a significant challenge to utilize the higher tolerance
to blur that infrared images inherently possess due to differ-
ences in shooting equipment.

For the source visible and infrared images, the content
information is intensely correlative. This is attributed to the
high degree of coincidence in both the scene and the time
of capture for each pair of infrared-visible images. It is in-
tuitive that visible images, often prone to blurring due to
equipment and target movement, have the potential to be
transformed into consistently sharp infrared images. Previ-
ous studies on style transfer task [4, 14, 17, 45] have closely
aligned with this concept.

In this paper, we present DSTFuse – a conceptually sim-
ple framework that aims to enhance deblurring via style
transfer for IVIF. In DSTFuse, the blurry visible image is
transformed into an image that combines infrared style with
visible features by an Auto-Encoder-based cross-modality
style transfer module (CST-module). Specifically, it aims
to utilize infrared images as a reference to impose fea-
ture constraints on the blurry visible images, thus reduc-
ing motion-induced artifacts and enhancing details. Sub-
sequently, DSTFuse utilizes the visible-infrared images to
generate a fused image with rich background information
and seamlessly integrates it with the output of CST-module
into a meticulously crafted mapping function. As shown in
Fig. 1(b), the contours of the blurred object in visible im-
ages under low-light conditions are gradually outlined, and
details are filled in as the style transfer process. Moreover,
the details in the fused image are also remarkably retained

(Fig. 1(c)). This approach effectively harnesses the strong
correlation between cross-modal images and the capability
of style transfer to adapt to different modalities. The contri-
butions of this work can be summarized in three aspects:

• We propose a dual-branch CNN-based framework for
deblrring local blurry target and extracting and fus-
ing global information, which better reflects the cor-
respondence between modalities.

• We propose a style transfer module for the IVIF task to
deblur the blurry target and retain visible information.

• Our method achieves promising image fusion results
and also performs more superior in downstream tasks
such as detection and segmentation.

2. Related Work

2.1. Infrared-visible fusion

With the development of deep learning, numerous work
on IVIF task have emerged [11, 27, 40]. Ma et al. [33]
proposed a GAN for IVIF task, conceptualizing the fu-
sion algorithm as an adversarial game between retaining in-
frared thermal radiation information and maintaining visi-
ble appearance texture information, and achieved substan-
tial breakthroughs. Then, Zhao et al. [55] pioneered the
exploration of the two-scale decomposition in IVIF task,
utilizing an encoder to decompose the images into back-
ground feature maps and detail feature maps, followed by
a decoder used to reconstruct the original image. Recently,
considering the combination of fusion and downstream pat-
tern recognition tasks, Sun et al. [38] and Tang et al. [40]
proposed the network driven by the downstream task and
achieved promising results. Additionally, incorporating a
pre-processing registration module before the fusion mod-
ule has been shown to effectively address the misregistra-
tion of source images [11]. Zhao et al. [52] introduced a
dual-branch Transformer-CNN network to correlate global
and local features, achieving a fusion process where low-
frequency features are related and high-frequency features
are unrelated.

2.2. Style transfer

Style transfer, initially proposed by Leon et al. [4], aims
to transfer the artistic style of one image onto another, cre-
ating an image with a unique artistic flair. Due to its inno-
vative nature, this technique has attracted significant atten-
tion, then numerous style transfer models are implemented
and utilized in various field [14, 15], particularly in image
restoration and video processing. For image transformation
problems, where an input image is converted into an output
image, perceptual loss [17] has been designed and utilized



for style transfer tasks. Then, Xun et al. [10] achieved arbi-
trary style transfer in real-time by introducing a novel adap-
tive instance normalization. To tackle the chanllenge of ver-
satile style transfer, Wu et al. [45] implemented video style
transfer without video in training process through InfoNCE
loss [44]. Recently, Kwon et al. [18] proposed a network
called CLIPstyler, capable of performing style transfer with
just a single text condition, achieving results comparable to
other models that use more complex inputs. The fundamen-
tal principle of classical style transfer methods is to gener-
ate an image that preserves the content of the original im-
age while seamlessly incorporating the distinctive charac-
teristics of the target style. This ensures that visible images
retain more visually detailed texture during the deblurring
process.

3. Method
The DSTFuse mainly consists of three modules, which

are detailed in Fig. 2. In the cross-modality style transfer
module (CST-module), the original visible image is com-
bined with the edge information generated by the Sobel al-
gorithm [6] as input. This concatenated input is then fed
into the Auto-Encoder-like module to generate a structure-
clear image that is similar in style to an infrared image. Fi-
nally, the infrared style image re-enters the CST-module as
input to generate a new infrared-like image with more visi-
ble features. In the fusion module, the pipeline aims to train
a Auto-Encoder-based structure for extracting features and
reconstructing original images (in reconstruction stage) or
generating fusion images initially (in fusion stage). In the
mapping module, the output images from the fusion module
and the CST-module are merged through an attention block
to generate the final output image. The detailed workflow is
illustrated in Fig. 2.

3.1. Cross-modality style transfer module

The CST-module aims to retain the visual effect of the
visible image while minimizing motion blur as much as pos-
sible. To achieve this, the CST-module divides the training
into two stages, focusing more on the infrared information
in the first stage and the visible information in the second.
In order to deblur efficiently, it adds feature constraints sim-
ilar to style transfer to guide training of model and incorpo-
rated edge information DS obtained from the Sobel algo-
rithm S in both stages:

DS = S(I)⊕ V, (1)

where S(I) means the result of the Sobel algorithm [6]
on the infrared image, which only retains the structure of
the objects. ⊕ means element-wise addition.

Stage-1. Considering the focus of the first stage is the in-
formation of infrared image, the input of the first EBlock in

encoder is designed as the concatenation of visible image
V and edge information S to obtain more structural infor-
mation. In addition, the edge information S is extracted as
shallow features ϕS through a convolution. Then, the ϕS

is used as the input, together with the second-to-last skip
connection, into the final layer of the decoder.

Stage-2. After obtaining the image with more functional
highlight and less motion blur, the output of the first stage
serves as the input for the second stage. Different from the
first stage, S is no longer used as an input so that the final
output image will not contain highlighted edges.

The CST-module eliminate the motion blur of the tar-
get by introducing the style of infrared images. At the
same time, the output image should not retain an excessive
amount of visual information from the input image. There-
fore, the perceptual loss [17] perfectly meets the require-
ments. The CST loss is:

LCST = α1Lperceptual(D, I, i) + α2LSSIM (F, V ), (2)

where Lperceptual(D, I, i) = ∥ϕ(D, i) − ϕ(I, i)∥2, and D
is the output of CST-module, ϕ(·, i) is the first i layers of a
simple model extractor similar to VGG. As the i increases,
the features become more abstract and the style becomes
more biased towards the infrared image. In first stage of
CST-module, it’s need to retaining the structure of targets
and reduce blurriness, while in the second stage, the focus
is on retaining color, texture. Therefore, the layer of model
extractor in the first stage is more than the second stage.

3.2. Fusion module

Reconstruction stage. The key to make Auto-Encoder
perform better in image fusion is to extract the most repre-
sentative features from source images. Capturing accurately
feature that precisely reflects the advantage of visible and
infrared images poses a significant challenge. And directly
extract such features using a randomly initialized encoder
instead of a well-pretrained one is not feasible.

To address this issue, the reconstruction stage is sched-
uled before the fusion stage. In this stage, a encoder is
trained to extract features and a decoder to reconstruct them
into original images for the subsequent fusion stage. Specif-
ically, for the input image, it will pass through the encoder
containing three EBlocks and the decoder with two DBlock
and one OutBlock to reconstruct itself. The block struct
can be seen in Fig. 2. And for each block, the residual-
connection is used to accelerate convergence. In addition,
skip connections between the first and last layers, and be-
tween the second and second-to-last layers, prevent gradient
vanishing.

Since the aim of the reconstruction stage is to minimize
the information loss of source image, the loss of reconstruc-
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Figure 2. The architecture of DSTFuse, (a) The reconstruction stage of fusion module. (b) The fusion stage of fusion module. (c) The
cross-modality style transfer module. (d) The mapping module.

tion can be defined as:

Lreconcstruct = α1f(I, Î) + α2f(V, V̂ ), (3)

where I and Î , V and V̂ represent the input and output of
infrared and visible images, respectively.

f(X, X̂) = ∥X − X̂∥2 + λLSSIM (X, X̂), (4)

where X and X̂ represent the above input and output im-
age, and LSSIM (X, X̂) = 1−SSIM(X, X̂). SSIM is the
structural similarity index, which is a measure of the simi-
larity between two pictures.

Fusion stage. After the reconstruction stage, the well-
trained feature extractor E(·) can be obtained. And the fea-
ture {ϕV , ϕI} can be extracted from visible and infrared
input {V, I} by:

ϕV = E(V ), ϕI = E(I). (5)

In previous studies, the neglect of suboptimal data has re-
sulted in poor performance on datasets containing blurry
images. In contrast to these work, the fusion module in
DSTFuse is designed to prioritize the incorporation of de-
tailed background information into the fused image, while
deliberately disregarding the target object, which is instead
the central focus of the CST module. Considering the high
correlation between source visible and infrared images, it

can be assumed that objects which appear motion-blurred
in the visible image correspond to high-contrast and distinct
targets in the infrared image. Therefore, the decoder should
be prompted to learn the environmental information exclud-
ing the high-contrast targets. To this end, a fusion layer with
attention block is added to highlight the background. And
the mapping function is described as follow:

ϕA = (ϕV ⊕ ϕI)⊕ (ϕV ⊕ ϕI)⊗ (1−A(I)), (6)

where ϕV and ϕI are the features extracted from visible and
infrared input, respectively. ⊕ and ⊗ means element-wise
addition and element-wise multiplication. A(·) is attention
map matrix.

Finally, the output image F will preserve more detailed
textures which is constrainted by the Sobel algorithm [6]
and the gradient information. Additionally, the output
should be similar to the visible image, so the loss function
is:

Lfuse =α1 Sobel(F, V, I) + α2∥ F−max(V, I)∥1
+ α3LSSIM (F, V ),

(7)

Sobel(F, V, I) = Sobel(F )−max(Sobel(V ),Sobel(I)),
(8)

where Sobel(·) is the Sobel algorithm [6].
In addition, the fusion module and the CST-module can

be trained simultaneously.



3.3. Mapping module

After training through the fusion module and the CST-
module, it is possible to obtain a fused image with detailed
environmental information and a small amount of func-
tional highlights, as well as a infrared style image with a
clear target structure and no motion blur. To integrate the
benefits of both images into a final composite, the mapping
module generates an attention map matrix derived from the
infrared input. This matrix emphasizes the edges of all tar-
gets present in the scene. The mapping function is:

O = (D2 ⊕ V )⊗A(I)⊕ (F ⊕ V )⊗ (1−A(I)), (9)

where D2 and F are the outputs of CST-module and fusion
module, V and I is the input of visible and infrared image,
respectively. ⊕ and ⊗ means element-wise addition and
element-wise multiplication. A(·) is the attention block.

After mapping, blurry parts of the final image are com-
posed of the deblurred image, while the rest is composed of
the fused image. The attention loss prompts the mapping
matrix to focus only on the edges of the image, similar to
fusion loss, which should be constrained by gradient and
edge information:

Lmap = α1 Sobel(F, V, I) + α2∥ F−max(V, I)∥1. (10)

4. Experiment
4.1. Settings

Dataset and metrics. To verify the performance of model
on deblurring, we select images with motion blur from the
LLVIP dataset [12] as training set (317 pairs) and test set
(60 pairs).

There are eight metrics used to quantitatively measure
the fusion results: spatial frequency (SF), average gradi-
ent (AG), mean square error (MSE), peak signal to noise
ratio (PSNR), mutual information (MI), visual information
fidelity (VIF), correlation coefficient (CC), and structural
similarity index measure (SSIM). The details of these met-
rics can be found in [30].

Implement details. DSTFuse is trained by Pytorch on
single NVIDIA GeForce RTX 3090 GPU and Intel Xeon
Gold 6330 CPU. The training samples are converted to
grayscale images and resized to 640 × 640 in the prepro-
cessing stage. In the training process, the Adam optimizer
is employed, initializing the learning rate at 10−4. The to-
tal number of training epochs is set to 15. During the first
ten epochs, both the fusion module and the CST-module
undergo concurrent training, with each of the reconstruc-
tion and fusion stages receiving training for precisely three
epochs. In the final five epochs, the training is solely di-
rected at the mapping module. For the tuning parameters in

loss function, in Eq. (2), α1 and α2 are set to 100 and 1. In
Eq. (3), α1, α2 and λ are set to 1, 1 and 5. In Eq. (7), α1 to
α3 are set to 10, 5 and 1. In Eq. (10), α1 and α2 are set to
10 and 1.

4.2. Comparison with SOTA methods

In this section, DSTFuse is tested on the test set and
compare the fusion results with the state-of-the-art meth-
ods including DIDFuse [55], RFN-Nest [22], MFEIF [27],
ReCoNet [11], SeAFusion [40], DeFusion [25], MetaFu-
sion [51], LLRNet [23] and EMMA [53].

Qualitative comparison. It has been shown the qualita-
tive comparison in Fig. 3. Obviously, the proposed method
more effectively integrates thermal radiation information
from infrared images with detailed textures from visible
images. As show in visual comparison result, the back-
ground information that was easily overlooked in previous
methods due to the prominence of infrared images is per-
fectly retained in DSTFuse. This can be attributed to the
CST-module, which does not forcibly merge visible images
with infrared image , but rather performs only style conver-
sion, thereby preserving most of the visible details. Conse-
quently, for the objects in dark regions, DSTFuse appropri-
ately highlights them for identification in downstream task.
For blurry object, DSTFuse providing details that conform
to human visual perception.

Quantitative comparison. Afterward, we follow the pre-
vious IVIF works by reporting eight metrics for visual eval-
uation criterion. There are excellent performance across
most metrics, demonstrating that it is suitable for the hu-
man visual perception without bias from observers or inter-
preters. Specifically, the optimal results on MI and CC [30]
show that the fused image contain the most amount of infor-
mation and the strongest correlation between source images
and fused image, respectively. Besides, the promising result
on SF, AG, MSE, PSNR and VIF [30] indicates show that
the proposed fusion method produces the most texture de-
tails, least distortion and best matches to the human visual
system.

Visualization of CST-module. Fig. 4 visualizes the effec-
tiveness of perceptual loss in CST-module. Obviously, with
training goes on, more detail texture of target are activated
and more background information are inactivate. As the in-
put of CST-module, the visible image contains the abundant
details of the target and exhibit significant perceptual differ-
ences compared to the infrared images which is regarded as
style image in style transfer. In the group of CST output, the
CST-module firstly focus on the profile of target, showing
that the deblurring function works well. As the perceptual



Visible Infrared DIDFuse [55] RFN-Nest [22] MFEIF [27] ReCoNet [11]

SeA [40] DeF [25] Meta [51] LLR [23] EMMA [53] Ours

Figure 3. Visual comparison for “010018” (up) and “050131” (down) in LLVIP IVIF dataset.

DID [55] RFN [22] MFE [27] ReC [11] SeA [40] DeF [25] Meta [51] LLR [23] EMM [53] Ours

SF 4.943 4.818 4.567 4.712 5.440 4.808 6.137 4.528 5.469 5.582
AG 2.036 2.251 1.882 2.031 2.432 2.148 2.985 1.787 2.430 2.540

MSE 0.043 0.060 0027 0.030 0.037 0.036 0.037 0.031 0.030 0.029
PSNR 13.71 12.22 15.78 14.26 14.59 14.40 14.46 14.83 15.42 15.56

MI 1.581 1.601 1.181 1.357 1.506 1.286 1.214 1.494 1.595 1.650
VIF 0.746 0.753 0.814 0.813 0.934 0.850 0.898 0.593 0.903 0.919
CC 0.686 0.674 0.712 0.707 0.696 0.647 0.684 0.693 0.703 0.734

SSIM 1.044 0.999 1.298 1.398 1.358 1.367 1.206 1.304 1.306 1.316

Table 1. Quantitative results of the IVIF task. The Bold and underline show the best, second-best value, respectively.

loss reaches convergence, an increasing amount of detail is
incorporated.

4.3. Ablation studies

The ablation studies are conducted on the LLVIP
dataset [12] to prove the rationality of DSTFuse, with the
results shown in Tab. 2 and Fig. 5.

Essential module in DSTFuse. To independently vali-
date the efficacy of the fusion module and the mapping
module, two comparative experiments have been devised.
In Exp. I, the mapping module is removed to ascertain its
capability in accurately mapping cross-modal information.
As an alternative, the summation method is used to inte-
grate output of CST-modlue with that of the fusion module.
In formula, the summation method can be described as:

O = (D2 ⊕ F ), (11)
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Figure 4. Visualization of the CST-module for “010018” (up),
“010054” (down) in LLVIP IVIF dataset. The values represent
the results of the perceptual loss.

where D2 and F are the outputs of CST-module and fusion
module, respectively.

When removing the mapping module, although the net-
work retains the ability to execute feature mapping, it falls
short in precisely selecting the requisite information from
distinct images. In Exp. II, the fusion module is eliminated
to confirm the proficiency in extracting background infor-
mation. To substitute for the output of this module, the
original visible image is utilized to provide background in-
formation. Results in Exp. II illustrate that the absence of
effective feature extraction results in a lack of detail and
texture, particularly in darker regions, thereby causing a de-
cline in overall performance.

Term in loss function. Then, in Exp. III, it separately re-
moves the perceptual loss from CST-module and modifies it
to adopt the conventional loss function used in other fusion
tasks, denoted as L2 = ∥x − x̂∥2. And in the first step of
CST-module, the x represents the infrared image, while in
the second step, it represents the visible image. The per-
ceptual loss ensures that, during the style transfer process
within the CST-module, the content image adequately in-
herits information from the style image, thereby making the
generated image perceptually more similar to the source im-
age. In contrast, the conventional loss function merely en-
forces the image to be similar to the source image. Results
in Exp. III demonstrate the necessity of perceptual loss.

4.4. Application in the downstream taks

To evaluate the promoting effect of fused image and its
improved performances on downstream task, further exter-
nal validation is conducted. For infrared-visible object de-
tection, the fused images generated by state-of-the-art mod-
els are evaluated using five classic detectors by compar-

I II III Ours

Figure 5. Ablation experiment for “010562” (up) and “050131”
(down) in LLVIP IVIF dataset.

Configurations SF PSNR CC VIF

I w/o Mapping Module 5.364 14.36 0.637 0.645
II w/o Fusion Module 4.947 14.24 0.680 0.835
III w/o Perceptual Loss 5.474 14.15 0.730 0.835

Ours 5.582 15.56 0.734 0.919

Table 2. Ablation experiment results. Bold indicates the best
value.

ing the AP value for person detection. The selected detec-
tors include Faster R-CNN [5], YOLOv5 [37], SSD [28],
RetinaNet [26] and Mask R-CNN [7]. For infrared-visible
semantic segmentation, the segmentation network includes
FCN [29], DeeplabV3 [2] and LSR-APP [8]. And the per-
formance is evaluated using Intersection over Union (IoU)
for person segmentation.

Object detection. As shown in Tab. 3, DSTFuse plays a
significantly positive role in detection. In comparison to
direct predictions made on the source images, the fused im-
ages generated by DSTFuse substantially enhance predic-
tion accuracy across all five detection models. Compared
to previous work, DSTFuse exhibits the promising supe-
rior detection capabilities, which can be contributed to its
ability to preserve information that aligns closely with the
human visual system. To obtain a more intuitive compari-
son, the detection results are compared using YOLOv5 [37]
as the detector and the visual results are shown in Fig. 6.
In the first example, when the infrared source images have
already been effectively detected, only the fused image gen-
erated by DSTFuse can retain the infrared features and be
detected. And for those infrared images that perform poorly
in detection due to overly prominent functional highlights
(e.g., the second example in Fig. 6), the fused images gen-
erated by DSTFuse appropriately balance the high contrast
of the targets with the real pixel intensity. This allows the



visible infrared RFN [22] MFEIF [27] Meta [51] Ours

visible infrared ReCoNet [11] PIA [41] SeA [40] Ours

visible DIDFuse [55] DeF [25] LLR [23] EMMA [53] Ours

Figure 6. Detection results on source images and different fused image for “040145” (up), “080246” (middle) and “080786” (down) in
LLVIP IVIF dataset.

Faster
YOLOv5 [37] SSD [28] Retina [26]

Mask
RCNN [5] RCNN [7]

VI 30.52 39.26 40.40 43.08 55.20
IR 34.03 37.80 39.29 41.28 48.97
DID [55] 32.05 39.11 44.97 43.56 54.38
RFN [22] 15.15 27.65 16.52 27.63 33.88
MFE [27] 32.48 42.57 39.67 41.00 50.94
ReC [11] 37.59 46.10 46.65 42.23 54.68
SeA [40] 36.25 44.54 46.13 46.84 55.24
DeF [25] 37.57 44.31 43.45 46.60 52.82
Meta [51] 36.43 43.49 49.36 52.19 56.42
LLR [23] 33.55 53.37 45.02 45.90 52.83
EMMA [53] 34.34 45.91 45.02 43.67 53.16
Ours 36.58 46.87 42.85 48.86 57.24

Table 3. AP(%) values of person for detection on LLVIP dataset.
The bold and underline show the best and second-best value, re-
spectively.

detector to accurately identify each target.

Semantic segmentation. To evaluate the performance of
DSTFuse on infrared-visible semantic segmentation, we se-
lected 42 pairs of infrared and visible images from the
LLVIP dataset [12], and proceeded to annotate the person
category within these images. The result in Tab. 4 show

FCN [29] DeeplabV3 [2] LSR-APP [8]

DID [55] 47.91 48.12 48.07
RFN [22] 44.69 46.49 47.99
MFE [27] 48.23 48.51 48.37
ReC [11] 48.32 48.70 48.57
SeA [40] 48.34 48.63 48.53
DeF [25] 48.37 48.52 48.52
Meta [51] 47.99 48.32 48.26
LLR [23] 47.97 48.29 48.13
EMMA [53] 48.10 48.37 48.41
Ours 48.48 48.64 48.48

Table 4. IoU(%) values of person for semantic segmentation on
LLVIP dataset. The bold and underline show the best and second-
best value, respectively.

that DSTFuse effectively integrates the contour details from
the source images, thereby enhancing the model’s ability to
recognize object boundaries and achieving more accurate
segmentation.



5. Conclusion
This paper presents a infrared-visible fusion framework

through introducing the style transfer. With the cross-
modality style transfer module, target with motion blur in
visible image are more clearly outlined and more easily
recognized. Experiments demonstrate the fusion effect of
DSTFuse, and the performance on downstream detection
and segmentation can be also improved.
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